If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21x^2-39x+18=0
a = 21; b = -39; c = +18;
Δ = b2-4ac
Δ = -392-4·21·18
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-3}{2*21}=\frac{36}{42} =6/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+3}{2*21}=\frac{42}{42} =1 $
| -2x+93-85=180 | | 8(s-2)+1=s+13 | | -2.3x+8.3x=-14 | | -(-4x20)+2x=28 | | x–1=3x+12 | | y=2.76+8 | | y=2.76+3 | | -2(9r+3)-7r=-10r(12r+9) | | x/2x=-6.2 | | 4w-2/3=-7/5w-4/5 | | 80/m=6 | | 10=4+3q | | x²-7x+15=0 | | 2x²-9x+16=0 | | d−2=−2+d | | 3(5x+4)=9x-2 | | (5x+10)=(6x+10) | | (5x+10)=(6x*10) | | 2/5x-6=4/10x+8 | | 5+x-14=18 | | –5r=–3r+6 | | 9540=(x-2)(180) | | q−52=2 | | X/6-3x=2/9 | | G(5)=5x-12 | | 1/6z+20=21 | | m/3+9=20 | | -9x-42=4(x+9) | | –6t=10−6t | | 12=-8+6(y-5) | | 2.5x+35=5x | | 12=-8y+6(y-5 |